DC/DC Converter SK12T-6A Series

Non-isolated & regulated 6A single output POL power converter

FEATURES

- High efficiency up to 94%
- Operating ambient temperature range: -40°C ~
 +85°C
- Input under-voltage protection, output short-circuit, over-current protection
- High-speed transient response
- Compact SMD package
- EN62368 approved

SK12T-6A series is a 6A non-isolated switching regulator. The output voltage is accurately adjustable from 0.75V to 5.0V, and the product is featured with high efficiency, fast transient response, input under-voltage, output short circuit, over-current protection. They meet CLASS B of CISPR32/EN55032 EMI standards by adding the recommended external components and they are widely used in applications such as communications, computer network industry, power distributed architecture, workstations, servers, LANs/WANs and provide high current with fast transient response for high-speed chips such as FPGA, DSP, and ASIC.

Selection Guide									
		Input Voltage (VDC)		Output		Efficiency(%)	Capacitive Load(µF) Max.		
Certification	Part No. [®]	Nominal (Range)	Max. ²	Voltage(VDC) [®] (Range)	Current (A) Max./Min.	Min./Typ.	1m Ω ≤ESR <10 m Ω	ESR ≥10 m Ω	
CE	SK12T-6A-P	12	15	0.75~5.0	/ /0	90/94	1000	3000	
CE	SK12T-6A-N	(8.3~14)	10	0./5~5.0	6/0				

Notes: ① "P" indicates that the Ctrl pin is positive logic control, "N" indicates that the Ctrl pin is negative logic control;

- 2 Exceeding the maximum input voltage may cause permanent damage;
- ③ The default output voltage is 0.75VDC, which can be adjusted to 1.2VDC, 1.8VDC, 2.5VDC, 3.3VDC, 5VDC. See Trim instructions for specific output voltage adjustment;
- **4** Unless otherwise specified, parameters in this table were measured under the 5VDC output voltage.

Item	Operating Co	Operating Conditions			Тур.	Max.	Unit		
Input Current (full load/no-load)	Nominal input	Nominal input voltage			2660/20		mA		
Start-up Voltage						8			
Under-voltage Protection				6			VDC		
Reverse Polarity Input					Avoid / Not protected				
Hot Plug					Unavailable				
Input Filter					Capacito	ance filter			
	N.4. I. I.	K12T-6A-P	(Positive logic)	Ctrl pin op	Ctrl pin open or pulled high (Vin-2.5VDC ~ Vin				
	Module on	K12T-6A-N	(Negative logic)	Ctrl pir	Ctrl pin pulled low to GND (0 ~ 0.5VDC)				
Ctrl*	N 4	K12T-6A-P	(Positive logic)	Ctrl pir	Ctrl pin pulled low to GND (0 ~ 0.5VDC)				
	Module off	K12T-6A-N	(Negative logic)	Ctrl pin op	Ctrl pin open or pulled high (Vin-2.5VDC ~				
	Input current v		1		mA				

2. Unless otherwise specified, parameters in this table were measured under the 5VDC output voltage.

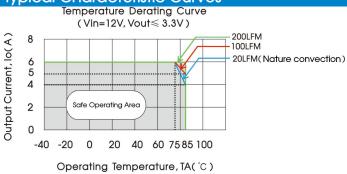
Output Specifications					
Item	Operating Conditions	Min.	Тур.	Max.	Unit
Voltage Accuracy	Full load, nominal input voltage		±1.0	±2.0	
Linear Regulation	Full load, input voltage range		±0.3		%
Load Regulation	Nominal input, 0% -100% load		±0.4		

DC/DC Converter

SK12T-6A Series

Ripple & Noise*	20MHz bandwidth, nominal input, 100% load		35	75	mVp-p		
Trim		0.75		5.0	VDC		
Temperature Coefficient	100% load		±0.02		%/ ℃		
Transient Response Deviation	Nominal input, 50%-100%-50% load step change,		±70		mV		
Transient Recovery Time	di/dt=2.5A/us, with external 2 x 150 μF polymer capacitors		20		us		
Over-current Protection	Nominal input	140	160		%lo		
Short-circuit Protection Nominal input Continuous, self-recovery							
Nister # 1 The Westernalist and I was all	and is used for Dipple and Neise test places refer to DC DC Conve		Mata famora	. 16 - 1-6			

Notes: * 1. The "parallel cable" method is used for Ripple and Noise test, please refer to DC-DC Converter Application Notes for specific information.

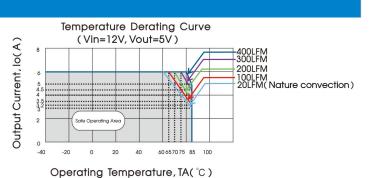
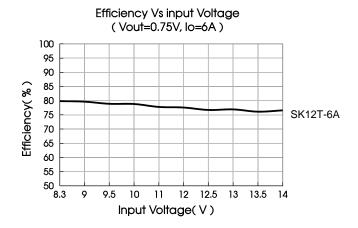
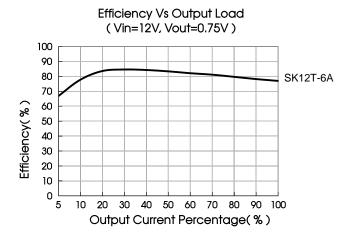
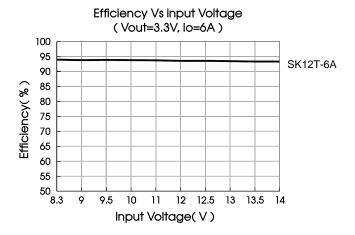
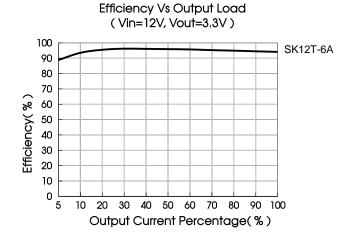

2. Unless otherwise specified, parameters in this table were measured under the 5VDC output voltage.

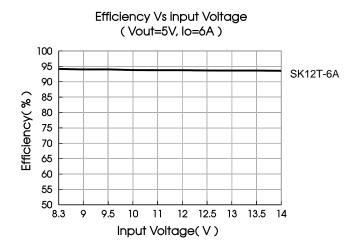
General Specifications					
Item	Operating Conditions	Min.	Тур.	Max.	Unit
Operating Temperature	See Fig. 1	-40		+85	°C
Storage Temperature		-55		+125	
Storage Humidity	Non-condensing	5		95	%RH
Reflow Soldering Temperature		time≤60s c	over 217℃. F	maximum d or actual ap EC J-STD-020	plication,
Switching Frequency	Full load, nominal input voltage		350	_	KHz
MTBF	MIL-HDBK-217F@25℃	1000			K hours

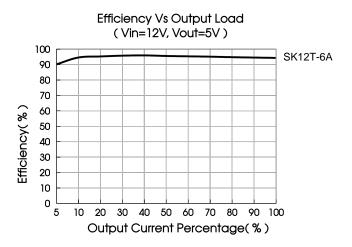
Mechanical Specifications				
Dimensions	20.30 x 11.40 x 6.60 mm			
Weight	3.9g (Typ.)			
Cooling Method	Nature convection or forced convection			

Electromagnetic Compatibility (EMC)						
F. M. M. W.	CE	CISPR32/EN55032 Class B (see Fig.3 for recommended circuit)				
Emissions	RE	CISPR32/EN55032 Class B (see Fig.3 for recommended circuit)				
Immunity	ESD	IEC/EN61000-4-2 Contact ±6KV	perf. Criteria B			

Typical Characteristic Curves


Fig. 1



Design Reference

1. Typical application

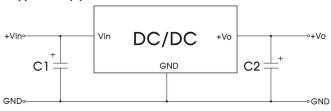


 Table 1

 Part No.
 C1
 C2

 SK12T-6A-P(N)
 100μF/35V
 22μF/16V

Fig. 2

Notes:

- 1. 100 µF polymer capacitors (C1) is required and should be connected close to the pin terminal, to ensure the stability of the converter;
- 2. To reduce the output ripple furtherly, increased values and/or tantalum or low ESR electrolytic capacitors may also be used instead;
- 3. Refer to Table 1 for C1 and C2 capacitor values;
- 4. Converter cannot be used for hot swap and with output in parallel.

2. EMC compliance circuit

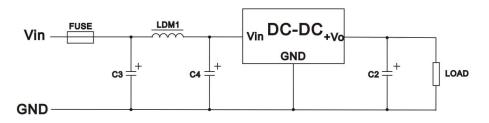


Fig. 3

Table 2

FUSE	C3/C4	LDM1	C2	
Selected based on the actual input current in application	100µF /35V	6.8µH	Refer to the Cout in Table 1	

3. Trim function for output voltage adjustment (open if unused)

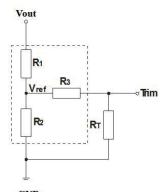
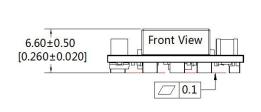
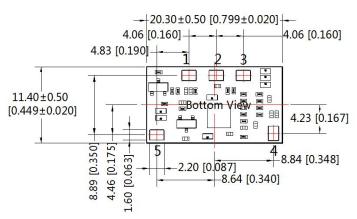


Fig. 4 TRIM resistor connection (dashed line shows internal resistor network)

Table 3					
Vo(VDC)	$R_{t}(\mathbf{k}\Omega)$				
0.7525	Open				
1.2	15.089				
1.8	5.873				
2.5	3.120				
3.3	1.826				
5	0.695				


Calculating Trim resistor (R_T) values:


$$R_T(\Omega) = \frac{7200}{V_O - 0.7525} - 1000$$

Notes: 1. R_1 : Resistance of Trim; Vo: The trim up voltage; 2. If $R_1 = \infty$ or Trim pin open, Vo = 0.7525 VDC.

Dimensions and Recommended Layout

Note:

Unit: mm[inch]

General tolerances: ±0.25[±0.010]

The layout of the device is for reference only , please refer to the actual product

0 [0.1	00]	5					1	
•		<u>)</u>					4	n l
	=							
200								
7.10 [0.003]								
-	—L	_	-	=	2		-	┵
1					2	3		

Note: Grid: 2.54*2.54mm

Pin-Out					
Pin	Function				
1	GND				
2	Trim				
3	+Vo				
4	Ctrl				
5	Vin				

Notes:

- 1. The maximum capacitive load offered were tested at input voltage range and full load;
- 2. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25°C, humidity<75%RH with nominal input voltage, 5VDC output voltage and rated output load;
- 3. All index testing methods in this datasheet are based on company corporate standards;
- 4. We can provide product customization service, please contact our technicians directly for specific information;
- 5. Products are related to laws and regulations: see "Features" and "EMC";
- Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.