SUMRQ075EDP1201

<u>SCHMID-M</u>

75 Watt DC-DC Converters

- ♦ 12:1 Input Range
- 75 W Isolated Output Power
- Enclosure type
- Standard "Quarter" Package
- ♦ 3000VDC Input To Output Basic Insulation

1 Year Warranty schmip-M

- Meet Requirements of standard EN50155
- Safety Approvals Pending
- RoHS Compliant

SPECIFICATIONS

All specifications are typical at nominal line, full load and 25°C unless otherwise noted.

INPUT SPECIFICATIONS

Input Voltage Range, 27V Nominal	8.5-100V
Input Filter	LC Network
Input Turn-On Voltage, 27V	8.5 VDC max.
Input Undervoltage Shutdown, 27V	
Input Overvoltage Shutdown, 27V	105 VDC typ.

OUTPUT SPECIFICATIONS

Overvoltage Protection⁶ 12V 15V typ.

GENERAL SPECIFICATIONS

Efficiency Switch Frequency	See Table 180KHz
Isolation Voltage,	
Input to Output	DC3000V
Input to FG	DC2000V
Output to FG	DC1000V
Isolation Resistance ⁷	10 ⁸ Ohms min.
Over temperature shutdown point ^{8, 9}	120°C typ.
Operation Temperature ¹⁰	-40°C to +110°C
Storage Temperature Range	55°C to +125°C
EMI/RFI Conducted ¹¹	EN55022 Level A/B
Dimensions	2.28*1.45*0.5 inches
	(57.91*36.8*12.70 mm)
Weight	

APPLICATIONS

Railway /Transportation System Wireless Network Telecom /Datacom System Industry Control System Workstation, Servers Semiconductor Equipment

NOTE

- 1. Defined at the static output regulation at 25°C, including initial setting accuracy, Line voltage within stated limits and load current within stated limits.
- 2. di/dt= 100mA/1uS, Tc= 25°C; load change= 0.5 lo max. to 0.75 lo max. and 0.75 lo max. to 0.5 lo max.
- 3. Measured from high line to low line.
- 4. Measured from full load to 1/4 load.
- 5. Measured with 2PCS 22uF/25V X7R MLCC and a 47uF/25V POS-CAP. cross to output.
- 6. The converter will automatically restart after the overvoltage protection status be removed.
- 7. Measured with 500 VDC.
- 8. Non-latching shutdown protection with 10°C restart hysteresis.
- 9. Defined as the highest temperature measured at any one off the specified temperature hotspot checkpoints.
- 10. Defined as the temperature measured at Base-Plate.
- 11. Test with external Input filter.
- 12. A 100uF/250V E-Cap is recommended to be added in the input terminal to stabilize input voltage source.
- 13. This power module is not internally fused. An input line fuse must always be used.
- 14. Standard product is active low, active high remote On/Off option is available

MODEL	INPUT	OUTPUT	OUTPUT	INPUT CURRENT		TYPICAL	Maximum
NUMBER VOLTAGE VOLTAGE CU	CURRENT	NO LOAD ⁽¹⁾	FULL LOAD ⁽²⁾	EFFICIENCY ⁽³⁾	Capacitive Load (uF)		
SUMRQ075EDP1201	27 VDC (8.5-100V)	12 VDC	6.25 A	15 mA	3.086 A	90 %	1500

NOTE:

- 1. Typical value at nominal input voltage and full load.
- 2. Maximum value at nominal input voltage and full load.
- 3. Typical value at nominal input voltage and full load.
- 4. Vout nominal at full load (resistive load)

REMOTE ON/OFF CONTROL		
Logic Compatibility CMOS or Open Collector TTL		
Negative Logic		
Ec-ON <+0.8 VDC or Short Circuit		
Ec-OFF >+2.5 VDC or Open Circuit		
Positive Logic		
Ec-ON >+2.5 VDC or Open Circuit		
Ec-OFF <+0.8 VDC or Short Circuit		
Control Common Referenced to Input Minus		

OUTLINE DIMENSIONS

Enclosure Type

Pin Connections		
Pin	Function	
1	-Vin	
2	Remote On/Off Control	
3	+Vin	
4	-Vout	
5	-Vsense	
6	Trim	
7	+Vsense	
8	+Vout	
	l Pin 1 2 3 4 5 6 7 8	

NOTE:

If remote sensing not utilized, output sense pin must be jumped to respective output power pins, for normal operation connect Pin NO.4 to Pin NO.5 and Pin NO.7 to Pin NO.8.

All dimensions in inches (mm). Tolerance .xx= ±0.04" .xxx=±0.02"

EXTERNAL OUTPUT TRIMMING Output may optionally be externally trimmed with a fixed resistor or an external trimpot as shown.

RECOMMEND PWB LAYOUT

Power Derating Curve (O/P Power VS I/P Voltage)

Mounting Method (PCB)

The power module works with conduction cooling and needs heat dissipation using heatsink. The power module is fixed to PCB by 2 position through the M3 tapped holes in the resin side, recommended torque is 5.5kgcm. The power module is fixed to the heatsink by 2 position through the M3 mounting tapped holes provide on the baseplate. It is recommended that the sequence to screw the 2 screws is in a diagonally manner and the recommended torque is 5.5kgcm. Make sure that PCB mounting screws do not touch the heatsink mounting screws.

Note:

- 1. Applying excessive stress to the input and output pins of the power module may damage internal connection. Avoid applying stress in excess of that show in below figure.
- 2. Input and output pins are soldered onto Internal PCB. Do not bend or pull the leads with excessive force.
- 3. As unexpected stress may be applied to the pins from vibration or shock, fix the power module by using the mounting holes with screws to reduce the stress.
- 4. Fix the power module to the PCB with screws before soldering the input and output pins to prevent the PCB pattern being damaged.

Typical Characteristics 12 V, 6.25A / 75 W

SUMRQ075EDP1201

27 VDC

-36 VDC

48 VDC

72 VDC

100 VDC

[A]

Power Dissipation

Current Limit Characteristics

Typical Characteristics 12 V, 6.25A / 75 W

SUMRQ075EDP1201

I_O = {6.25 A} resistive load.

Time scale: ({50 ms/div.}).

Output Ripple & Noise

Output Voltage Adjust (TRIM UP/TRIM DOWN)

The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust, Increase:

$$\mathbf{R}_{\mathrm{ADJ}_UP} = \left(\frac{7.246}{\Delta} - 62\right) \,\mathrm{k}\Omega$$

Output Voltage Adjust, Decrease:

$$R_{\rm ADJ_DOWN} = \left(\frac{9.125}{\Delta} - 78.371\right) \,\mathrm{k}\Omega$$

Shut-down enabled by disconnecting V_I at: $T_{P1} = +25^{\circ}C, V_1 = \{27 V\},\$ I₀ = {6.25 A} resistive load.

Top trace: output voltage ({10 V/div.}). Bottom trace: input voltage ({20 V/div.}). Time scale: ({10 ms/div.}).

Output Load Transient Response

Output Voltage=12V

Example:

To trim up the 12V model by 8% to 12.96V the required external resistor is:

$$R_{ADJ_{-}UP} = \left(\frac{7.246}{0.08} - 62\right) = 28.58 \,\mathrm{k\Omega}$$

Example:

To trim down the 12V model by 7% to 11.16V the required external resistor is:

$$R_{\rm ADJ_DOWN} = \left(\frac{9.125}{0.07} - 78.371\right) = 51.99 \,\rm k\Omega$$

SCHMID MULTITECH GMBH

TEL: +49-9403-9510-0 FAX: +49-9403-9510-22 Weinbergstraße 60b, 93105 Tegernheim, Germany www.schmid-m.com info@schmid-m.com

Schmid Multitech GmbH

The Copyright and authority for the interpretation of the products are reserved by SCHMID-M. Specifications subject to change without notice.