# DC/DC Converter SURF48 QB-200W(F/H)R3 Series



200W isolated DC-DC converter with Ultra-wide Input and Regulated Single Output



#### **FEATURES**

- Ultra-wide 4:1 input voltage range
- High efficiency up to 91%
- I/O isolation test voltage 2.25k VDC
- Input under-voltage protection, output short-circuit, over-current, over-voltage, over-temperature protection
- Operating ambient temperature range -40°C
   ~ +85°C
- Five-sided metal shielding package
- Industry standard ¼-Brick package and pin-out

SURF48\_QB-200W(F/H)R3 series are isolated 200W DC-DC products with 4:1 input voltage. They feature efficiency up to 91%, 2250VDC input to output isolation, operating temperature of -40°C to +85°C, input under-voltage, output short circui, over-current, over-voltage, over-temperature protection. The products meet CLASS B of CISPR32/EN55032 EMI standards by adding the recommended external components and they are widely used in applications such as battery powered systems, industrial controls, electricity, instrumentation, railway, communication and intelligent robotic.

| Selection Guide        |                     |       |              |                   |                                      |                              |      |
|------------------------|---------------------|-------|--------------|-------------------|--------------------------------------|------------------------------|------|
|                        | Input Voltage (VDC) |       | Output       |                   | F     F66 - !                        | O 144 1 1                    |      |
| Part No.®              | Nominal<br>(Range)  | Max.® | Voltage(VDC) | Current (A)(Max.) | Full Load Efficiency<br>(%)Min./Typ. | Capacitive Load<br>(µF) Max. |      |
| SURF4805QB-200W(F/H)R3 |                     |       | 5            | 40                | 86/88                                | 6000                         |      |
| SURF4812QB-200W(F/H)R3 |                     |       |              | 12                | 16.7                                 | 89/91                        | 2000 |
| SURF4815QB-200W(F/H)R3 | 48<br>(18-75)       | 80    | 15           | 13.3              | 87/89                                | 2000                         |      |
| SURF4824QB-200W(F/H)R3 | (16-75)             |       | 24           | 8.4               | 89/91                                | 1000                         |      |
| SURF4848QB-200W(F/H)R3 |                     |       | 48           | 4.2               | 89/91                                | 450                          |      |

Note

①Use "F" suffix is for added aluminum baseplate and "H" suffix for heat sink mounting. We recommend to choose modules with a heat sink for enhanced heat dissipation and applications with extreme temperature requirements;

②Exceeding the maximum input voltage may cause permanent damage.

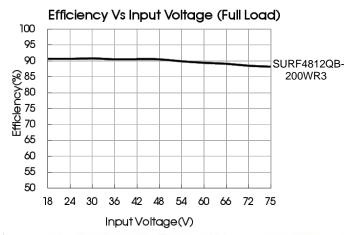
| Input Specifications              |                        |             |               |                |       |
|-----------------------------------|------------------------|-------------|---------------|----------------|-------|
| Item                              | Operating Conditions   | Min.        | Тур.          | Max.           | Unit  |
| Input Current (full load/no-load) | Nominal input voltage  |             | 4682/100      | 4845/200       | A     |
| Reflected Ripple Current          | Nominal input voltage  |             | 100           |                | mA    |
| Surge Voltage (1sec. max.)        |                        | -0.7        | -             | 90             |       |
| Start-up Threshold Voltage        |                        |             | -             | 18             | VDC   |
| Input Under-voltage Protection    |                        | 14          | 16            |                |       |
| Input Filter                      |                        | Pi filter   |               |                |       |
|                                   | Module on              | Ctrl pin o  | open or pulle | d high (3.5-1: | 2VDC) |
| Ctrl*                             | Module off             | Ctrl pin    | pulled low to | GND (0-1.2)    | VDC)  |
|                                   | Input current when off | -           | 2             | 10             | mA    |
| Hot Plug                          |                        | Unavailable |               |                |       |

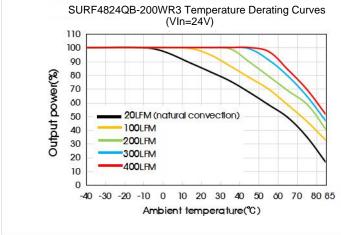
Schmid Multitech GmbH - 1 -

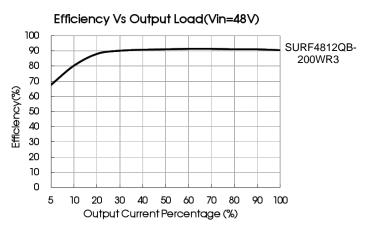
# DC/DC Converter

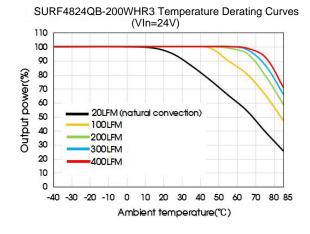
# SURF48\_QB-200W(F/H)R3 Series

Note: \*The Ctrl pin voltage is referenced to input GND.


| <b>Output Specifications</b>    |                             |                             |       |              |               |       |
|---------------------------------|-----------------------------|-----------------------------|-------|--------------|---------------|-------|
| Item                            | Operating Conditions        | Operating Conditions        |       | Тур.         | Max.          | Unit  |
| Voltage Accuracy                |                             |                             |       | ±1           | ±3            |       |
| Linear Regulation               | Input voltage variation fro | om low to high at full load | -     | ±0.2         | ±0.5          | %     |
| Load Regulation                 | 5%-100% load                | -100% load                  |       | ±0.5         | ±0.75         |       |
| Transient Recovery Time         | 25% load step change        |                             | -     | 300          | 500           | μs    |
| Transient Response Deviation 25 |                             | 5V output                   | -     | ±3           | ±7.5          | %     |
|                                 | 25% load step change        | Others                      |       | ±3           | ±5            |       |
| Temperature Coefficient         | Full load                   | Full load                   |       | -            | ±0.03         | %/℃   |
| Ripple & Noise*                 | 20MHz bandwidth             | 20MHz bandwidth             |       | 150          | 250           | mVp-p |
| Over-voltage Protection         |                             |                             | 110   | 130          | 160           | %Vo   |
| Over-current Protection         | Input voltage range         | Input voltage range         |       | 130          | 150           | %lo   |
| Short-circuit Protection        |                             |                             | Hiccu | up, continuo | us, self-reco | very  |


| General Specification       | s                            |                                                                       |      |               |             |            |
|-----------------------------|------------------------------|-----------------------------------------------------------------------|------|---------------|-------------|------------|
| Item                        | Operating Conditi            | Operating Conditions                                                  |      |               | Max.        | Unit       |
|                             | Input-output                 |                                                                       | 2250 | -             | -           | VDC        |
| Isolation                   | Input-case                   | Electric Strength Test for 1 minute with a leakage current of 5mA max | 1500 |               |             |            |
|                             | Output-case                  | will a leakage callell of SITA Hax                                    | 500  |               | -           |            |
| Insulation Resistance       | Input-output resisto         | ance at 500VDC                                                        | 100  | -             |             | <b>M</b> Ω |
| Isolation Capacitance       | Input-output capa            | acitance at 100KHz/0.1V                                               |      | 2200          |             | рF         |
| Trim                        |                              |                                                                       | 90   | -             | 110         | %Vo        |
| Sense                       |                              |                                                                       |      |               | 105         | %VO        |
| Operating Temperature       |                              |                                                                       |      |               | +85         |            |
| Storage Temperature         |                              |                                                                       |      |               | +125        |            |
| Over-temperature Protection | Max. Casing Temp             | Max. Casing Temperature                                               |      | 115           | 120         | $^{\circ}$ |
| Pin Soldering Resistance    | Wave-soldering, 10           | Wave-soldering, 10 seconds                                            |      |               | 260         |            |
| Temperature                 | Soldering spot is 1.         | 5mm away from case for 10 seconds                                     |      | -             | 300         |            |
|                             |                              | SURF48xxQB-200WR3                                                     |      |               | 7.5         |            |
| Thermocouple                | Natural convectio<br>(20LFM) | n<br>SURF48xxQB-200WFR3                                               |      | -             | 6.3         | °C/W       |
|                             | (2021111)                    | SURF48xxQB-200WHR3                                                    |      |               | 5.2         |            |
| Storage Humidity            | Non-condensing               | Non-condensing                                                        |      | -             | 95          | %RH        |
| Vibration                   |                              |                                                                       |      | /EN61373 trai | n 1B catego | ory        |
| Switching Frequency         | PWM mode                     | PWM mode                                                              |      | 250           |             | KHz        |
| MTBF                        | MIL-HDBK-217F@25             | MIL-HDBK-217F@25°C                                                    |      | _             |             | K hours    |


| Mechanical Specifications |                                         |                                                                                              |  |  |  |
|---------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|
| Case Material             | Aluminum alloy case, Black flame-retard | Aluminum alloy case, Black flame-retardant and heat-resistant plastic bottom case (UL94 V-0) |  |  |  |
|                           | SURF48xxQB-200WR3                       | 61.8 x 40.2 x 12.7 mm                                                                        |  |  |  |
| Dimensions                | SURF48xxQB-200WFR3                      | 62.0 x 56.0 x 14.6 mm                                                                        |  |  |  |
|                           | SURF48xxQB-200WHR3                      | 61.8 x 40.2 x 27.7 mm                                                                        |  |  |  |
|                           | SURF48xxQB-200WR3                       | 89.0g(Typ.)                                                                                  |  |  |  |
| Weight                    | SURF48xxQB-200WFR3                      | 109.0g(Typ.)                                                                                 |  |  |  |
|                           | SURF48xxQB-200WHR3                      | 120.0g(Typ.)                                                                                 |  |  |  |
| Cooling Method            | Free air convection (20LFM)             |                                                                                              |  |  |  |

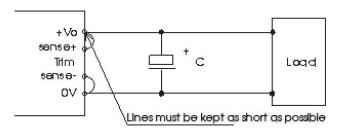

| Electromo | agnetic Co | mpatibility (EMC)            |                                                                                                           |                 |  |
|-----------|------------|------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------|--|
| CE CE     |            | CISPR32/EN55032              | CLASS A (see Fig. 2 for recommended circuit)                                                              |                 |  |
| Emissions | RE         | CISPR32/EN55032              | CLASS A (see Fig. 2 for recommended circuit)                                                              |                 |  |
|           | ESD        | IEC/EN61000-4-2, EN50121-3-2 | Contact ±6KV Air ±8KV                                                                                     | perf.Criteria B |  |
|           | RS         | IEC/EN61000-4-3, EN50121-3-2 | 10V/m                                                                                                     | perf.Criteria A |  |
|           | EFT        | IEC/EN61000-4-4, EN50121-3-2 | ±2KV(see Fig. 2-1for recommended circuit)                                                                 | perf.Criteria A |  |
| Immunity  | Surge      | EN50121-3-2                  | differential mode $\pm 1$ KV, 1.2/50us, source impedance 42 $\Omega$ (see Fig.2-1for recommended circuit) | perf.Criteria B |  |
|           | CS         | IEC/EN61000-4-6, EN50121-3-2 | 10 Vr.m.s                                                                                                 | perf.Criteria A |  |

## Typical Characteristic Curves



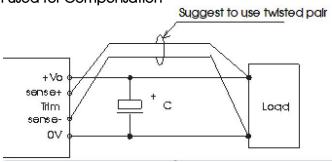







#### Notes:

<sup>1)</sup> Product application thermal design should be referred to the recommended PCB layout and recommended heat dissipation structure, please see DC-DC Converter Application Notes for specific operation.

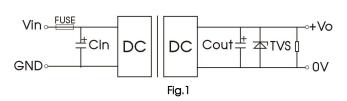

#### Remote Sense Application

#### 1. Remote Sense Connection if not used



- (1) If the sense function is not used for remote regulation the user must connect the +Sense to + Vo and -Sense to 0V at the DC-DC converter pins and will compensate for voltage drop across pins only.
- (2) The connections between Sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.

#### 2. Remote Sense Connection used for Compensation




- (1) PCB-tracks or cables/wires for Remote Sense must be kept as short as possible.
- (2) In cables and discrete wiring applications, twisted pair or other techniques should be implemented.
- (3) Using remote sense with long wires long wires may cause unstable operation. Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation.
- (4) We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.

#### Design Reference

#### 1. Typical application

- (1) We recommended using the recommended circuit shown in Fig.1 during product testing and application, otherwise please ensure that at least a 220µF electrolytic capacitors is connected at the input in order to ensure adequate voltage surge suppression and protection.
- (2) We recommend increasing the value of Cin and pay attention to the unstable input voltage if the product input side is paralleled with motor drive circuit and/or larger energy transient circuits, to ensure the stability of input terminal and avoid repeatedly start-up problems due to input voltage lower than undervoltage protection point.
- (3) We recomended increasing the output capacitance with limited to the capacitive load specification and/or increasing the voltage clamping circuit(such as TVS) if the output terminal is inductive device such as relay or a motor, to ensure adequate voltage surge suppression and protection.
- (4) Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.



| Vout(VDC) | Fuse              | Cin*  | Cout   | TVS      |
|-----------|-------------------|-------|--------|----------|
| 5         |                   | -     | 470µF  | SMDJ6.0A |
| 12        | 004               |       | 220µF  | SMDJ14A  |
| 15        | 20A,<br>slow blow | 220µF |        | SMDJ17A  |
| 24        |                   |       | 100 JF | SMDJ28A  |
| 48        |                   |       | 100µF  | SMDJ54A  |

Note:

<sup>\*</sup>Please pay attention to the ambient temperature of the product when using an external capacitor, increase the electrolytic capacitor values to at least 1.5 times the original parameter if the ambient temperature is low(such as -25°C).

#### 2. EMC compliance circuit

We recommended using the recommended circuit shown in Fig.2 during product EMC testing and application.

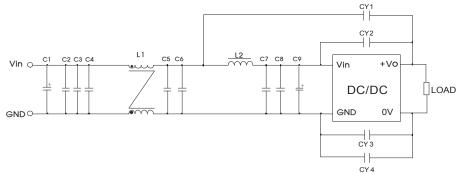
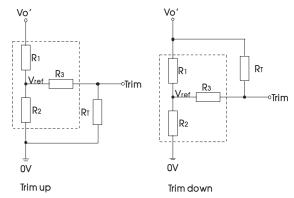




Fig. 2

| Components                 | Recommended Component value       |
|----------------------------|-----------------------------------|
| C1                         | 150µF/100V electrolytic capacitor |
| C9                         | 47µF/100V electrolytic capacitor  |
| C2, C3, C4, C5, C6, C7, C8 | 2.2µF/100V ceramic capacitor      |
| L1                         | 1.0mH/15A common mode inductor    |
| L2                         | 1.5µH/15A inductance              |
| CY1, CY2, CY3, CY4         | 1nFY1 safety capacitor            |

#### 3. Trim Function for Output Voltage Adjustment (open if unused)

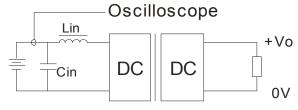


Calculation formula of Trim resistance:

up: 
$$RT = \frac{aR_2}{R_2-a} - R_3$$
  $a = \frac{Vref}{Vo'-Vref} \cdot R_3$ 

down: 
$$R_T = \frac{aR_1}{R_1-a} - R_3$$
  $a = \frac{Vo'-Vref}{Vref} \cdot R_2$ 

 $R_T$  = Trim Resistor value; a = self-defined parameter Vo'= desired output voltage (±10% max.)


TRIM resistor connection (dashed line shows internal resistor network)

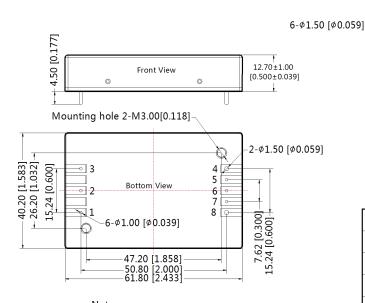
| Vout(VDC) | <b>R1(K</b> Ω) | <b>R2(K</b> Ω) | <b>R3(K</b> Ω) | Vref(V) |
|-----------|----------------|----------------|----------------|---------|
| 5         | 3.036          | 3              | 10             | 2.5     |
| 12        | 11.00          | 2.87           | 15             | 2.5     |
| 15        | 14.03          | 2.8            | 15             | 2.5     |
| 24        | 24.872         | 2.87           | 15             | 2.5     |
| 48        | 53.017         | 2.913          | 15             | 2.5     |

Note: When using the Trim down function make sure that the RT resistor value is calculated correctly. If the Trim" pin is shorted with "+Vo", or its value is too low, the or "the output voltage Vo' would be lower than 0.9Vo, which may cause the product to fail.

#### SURF48\_QB-200W(F/H)R3 Series

#### 4. Reflected ripple current-test circuit




Note:Lin(4.7 $\mu$ H) , Cin(220 $\mu$ F, ESR < 1.0  $\Omega$  at 100 KHz)

The products do not support parallel connection of their output and we recommended the use of a converter with higher output power capability to cover applications with higher power requirements.

#### SURF48xxQB-200WR3 Dimensions and Recommended Layout

THIRD ANGLE PROJECTION

2-\$\phi 2.00 [\$\phi 0.079]





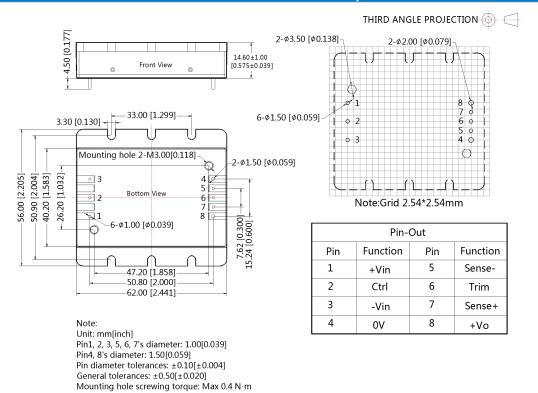
Unit: mm[inch]

Pin1, 2, 3, 5, 6, 7's diameter: 1.00[0.039]

Pin4, 8's diameter: 1.50[0.059]

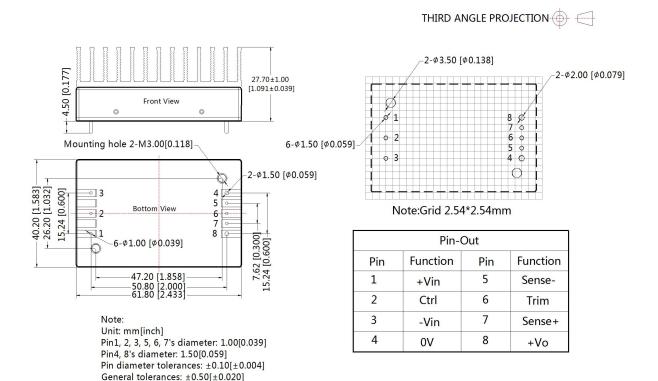
Pin diameter tolerances:  $\pm 0.10[\pm 0.004]$ General tolerances:  $\pm 0.50[\pm 0.020]$ 

Mounting hole screwing torque: Max 0.4 N·m


Note:Grid 2.54\*2.54mm Pin-Out **Function** Function Pin Pin 1 5 Sense-+Vin 2 Ctrl 6 Trim 7 3 Sense+ -Vin 4 8 0V +Vo

2-\$\phi 3.50 [\$\phi 0.138]

№ 10 2


o 3

#### SURF48xxQB-200WFR3 Dimensions and Recommended Layout



#### SURF48xxQB-200WHR3 Dimensions and Recommended Layout

Mounting hole screwing torque: Max 0.4 N·m



### DC/DC Converter SURF48\_QB-200W(F/H)R3 Series

#### Note:

- 1. The maximum capacitive load offered were tested at input voltage range and full load;
- Unless otherwise specified, data in this datasheet should be tested under the conditions of Ta=25°C, humidity<75%RH when inputting nominal voltage and outputting rated load;
- 3. All index testing methods in this datasheet are based on our company corporate standards;
- 4. We can provide product customization service and match filter module;
- 5. Products are related to laws and regulations: see "Features" and "EMC";
- 6. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.

Schmid Multitech GmbH - 8 -