6W isolated DC-DC converter in SMD Ultra-wide input and regulated single output

FEATURES

- Ultra-wide 7:1 input voltage range
- High efficiency up to 82%
- I/O isolation test voltage 3K VAC
- Input under-voltage protection, output short-circuit, over-current, over-voltage protection
- Creepage distance is 4.5 mm , clearance is 4.2 mm
- Operating ambient temperature range: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
- EMI meets automotive standards EN55025/CISPR 25 standard Class 4
- AEC-Q100 standards approved

C E Patent Protection RoHS

- Production process meets IATF16949 system
- EN62368 approved

SC UWF24_J(V)T-6WR3 series of isolated 6W DC-DC converter products with an ultra-wide 7:1 input voltage range. They feature efficiencies up to 80%, input to output isolation is tested with 3000 VAC and the converter safety operate ambient temperature of $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, input under-voltage protection, output over-voltage, over-current, short-circuit protection. They are widely used in applications such as automobile electronic, industrial control, electric power, instruments and communication fields.

Selection Guide								
Cerrification	Part No. ${ }^{\oplus}$	Input Voltage (VDC)		Output			Full Load Efficiency (\%) Min./Typ.	Capacitive Load (μ F)Max.
		Nominal (Range)	Max. ${ }^{\text {® }}$	Voltage (VDC)	Current(mA) Max./Min.			
					6 \leqslant Vin<9	$9 \leqslant$ Vin $\leqslant 42$		
CE	SCUWF2405J(Y)T-6WR3	$\begin{gathered} 24 \\ (6-42) \end{gathered}$	45	5	960/0	1200/0	76/78	1000
	SCUWF2412J(Y)T-6WR3			12	400/0	500/0	78/80	470
	SCUWF2415J(Y)T-6WR3			15	320/0	400/0	78/80	220
	SCUWF2424J(Y)T-6WR3			24	200/0	250/0	80/82	100

Notes:
(1) SCUWF24_J(Y)T-6WR3 contains 2 types of products, include SCUWF24_JT-6WR3 (SMD package without shell) and SCUWF24_JYT-6WR3 (SMD package with shell);
(2) Exceeding the maximum input voltage may cause permanent damage.

Input Specifications					
Item	Operating Conditions	Min.	Typ.	Max.	Unit
Input Current (full load / no-load)	Nominal input voltage	--	321/8	329/15	mA
Reflected Ripple Current		--	30	--	
Surge Voltage (1sec. max.)		-0.7	--	50	VDC
Start-up Voltage		--	--	6	
Input Under-voltage Protection		3.5	4.5	--	
Start-up Time	Nominal input voltage \& constant resistance load	--	10	150	ms
Input Filter		Pi filter			
Hot Plug		Unavailable			

Output Specifications						
Item	Operating Conditions		Min.	Typ.	Max.	Unit
Voltage Accuracy ${ }^{\text {D }}$	5\%-100\% load		--	± 1	± 2	
Linear Regulation	Input voltage variation from low to high at full load		--	± 0.2	± 0.5	\%
Load Regulation	5\%-100\% load		--	± 0.5	± 1	
Transient Recovery Time	25\% load step change, nominal input voltage		--	300	500	$\mu \mathrm{s}$
Transient Response Deviation	25% load step change, input voltage range	5 V output	--	± 4	± 8	\%
		Others	--	± 3	± 5	\%
Temperature Coefficient	Full load		--	--	± 0.03	\%/ ${ }^{\circ} \mathrm{C}$
Ripple \& Noise ${ }^{\text {® }}$	20 MHz bandwidth, nominal input voltage, 5\%-100\% load		--	60	100	mV p-p

DC/DC Converter

SCUWF24_J(Y)T-6WR3 Series

Over-voltage Protection	Input voltage range	110	--	160	\%Vo
Over-current Protection		110	--	300	\%lo
Short-circuit Protection		Continuous, self-recovery			
Note: (1) Output voltage accuracy of 5 VDC output converter for $0 \%-5 \%$ load is $\pm 3 \%$ max, voltage accuracy of other models for $0 \%-5 \%$ load is $\pm 2 \%$ max ; (2) Ripple \& Noise at < 5% load is 250 mV max. The "parallel cable" method is used for Ripple and Noise test, please refer to DC-DC Converter Application Notes for specific information.					

General Specifications

Item	Operating Conditions	Min.	Typ.	Max.	Unit
Isolation	Input-output Electric Strength Test for 1 minute with a leakage current of 5 mA max.	3000	--	--	VAC
Insulation Resistance	Input-output resistance at 500VDC	1000	--	--	$\mathrm{M} \Omega$
Isolation Capacitance	Input-output capacitance at $100 \mathrm{KHz} / 0.1 \mathrm{~V}$	--	500	--	pF
Reinforced Isolation	Clearance	4.2	--	--	mm
	Creepage	4.5	--	--	
Operating Temperature	See Fig. 1	-40	--	+105	${ }^{\circ} \mathrm{C}$
Storage Temperature		-55	--	+125	
Storage Humidity	Non-condensing	5	--	95	\%RH
Pin Soldering Resistance Temperature	Soldering spot is 1.5 mm away from case for 10 seconds	--	--	+300	${ }^{\circ} \mathrm{C}$
Vibration		GBT 28046.3-2011 4.1.2.4 Random vibration, passenger car, sprung masses (vehicle body) 1. The r.m.s. acceleration value shall be $27.8 \mathrm{~m} / \mathrm{s} \wedge 2$. 2. Use a test duration of 8 hours for each plane of the DUT.			
Switching Frequency *	PWM mode	--	270	--	KHz
MTBF	MIL-HDBK-217F@25 ${ }^{\circ} \mathrm{C}$	1000	--	--	K hours
Moisture Sensitivity Level (MSL)	IPC/JEDEC J-STD-020D. 1	Level 1			

Mechanical Specifications		
Case Material		Black epoxy resin; flame-retardant and heat-resistant
Dimensions	SCUWF24_JT-6WR3	$43.68 \times 23.00 \times 10.00 \mathrm{~mm}$
	SCUWF24_JYT-6WR3	$43.68 \times 25.00 \times 10.64 \mathrm{~mm}$
Weight	SCUWF24_JT-6WR3	7.5 g (Typ.)
	SCUWF24_JYT-6WR3	10.4 g (Typ.)
Cooling Method		Free air convection

Electromagnetic Compatibility (EMC)

Emissions	CE	CISPR25/EN55025 CLASS 4 (see Fig.3 for recommended circuit)	
		CISPR32/EN55032 CLASS A (without external components)	
	RE	CISPR25/EN55025 CLASS 4 (see Fig. 3 for recommended circuit)	
		CISPR32/EN55032 CLASS A (without external components)	
Immunity	ESD	ISO10605 Contact $\pm 6 \mathrm{KV}$	perf. Criteria B
	RS	ISO11452-2 150V/m (see Fig. 3 for recommended circuit)	perf. Criteria A
	BCl	ISO11452-4 1MHz-400MHz,150mA (see Fig. 3 for recommended circuit)	perf. Criteria A
	Electrical transient conduction along supply lines only	ISO7637-2 LEVEL III	
		Pulsel (see Fig. 3 for recommended circuit)	perf. Criteria B
		Pulse2a (see Fig. 3 for recommended circuit)	perf. Criteria A
		Pulse2b (see Fig. 3 for recommended circuit)	perf. Criteria B
		Pulse3a (see Fig. 3 for recommended circuit)	perf. Criteria A
		Pulse3b (see Fig. 3 for recommended circuit)	perf. Criteria A

DC/DC Converter

Typical Characteristic Curve

Design Reference

1. Typical application

All DC-DC converters of this series are tested before delivery using the recommended circuit shown in Fig. 2.
Input and/or output ripple can be further reduced by appropriately increasing the input \& output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.

Fig. 2

Vout (VDC)	Cin	Cout
5		$100 \mu \mathrm{~F} / 16 \mathrm{~V}$
$100 \mu \mathrm{~F} / 63 \mathrm{~V}$	$100 \mu \mathrm{~F} / 35 \mathrm{~V}$	
		$47 \mu \mathrm{~F} / 35 \mathrm{~V}$

2. EMC compliance circuit

Parameter description:

Fig. 3
3. The products do not support parallel connection of their output

SCUWF24_JT-6WR3 Dimensions and Recommended Layout

Note:
Unit: mm[inch]
Pin diameter tolerances: $\pm 0.10[\pm 0.004]$
General tolerances: $\pm 0.50[\pm 0.020$]

Note: Grid $2.54 * 2.54 \mathrm{~mm}$

Pin-Out			
Pin	Mark	Pin	Mark
1	Vin	9	NC
2	Vin	10	-Vo
3	Vin	11	-Vo
5	GND	12	NC
6	GND	13	+Vo
7	GND	14	+Vo
8	NC		

NC: Pin to be isolated circuitry

SCUW24_JYT-6WR3 Dimensions and Recommended Layout

> THIRD ANGLE PROJECTION

Note: Grid $2.54 * 2.54 \mathrm{~mm}$

Note:
Unit: mm[inch]
Pin diameter tolerances: $\pm 0.10[\pm 0.004]$
General tolerances: $\pm 0.50[\pm 0.020]$

Pin-Out			
Pin	Mark	Pin	Mark
1	Vin	9	NC
2	Vin	10	-Vo
3	Vin	11	-Vo
5	GND	12	NC
6	GND	13	+Vo
7	GND	14	+Vo
8	NC		

NC: Pin to be isolated circuitry

Note:

1. The maximum capacitive load offered were tested at input voltage range and full load;
2. Unless otherwise specified, parameters in this datasheet were measured under the conditions of $\mathrm{Ta}=25^{\circ} \mathrm{C}$, humidity< $75 \% \mathrm{RH}$ with nominal input voltage and rated output load;
3. All index testing methods in this datasheet are based on company corporate standards;
4. We can provide product customization service, please contact our technicians directly for specific information;
5. Products are related to laws and regulations: see "Features" and "EMC";
6. Our products shall be classified according to $\operatorname{ISO} 14001$ and related environmental laws and regulations, and shall be handled by qualified units.
