DC/DC Converter SVCB48_SBO-30WR3 Series

30W isolated DC-DC converter
Wide input and regulated single output

Patent Protection RoHS

FEATURES

- Wide 2:1 input voltage range
- High efficiency up to 90%
- I/O isolation test voltage 1.5K VDC
- Input under-voltage protection, output over-current, short-circuit, over-voltage protection, over-temperature protection
- Operating ambient temperature range: -40°C to +85°C
- Industry standard 1/16 brick, complies with DOSA standard
- EN62368 approved

SVCB48_SBO-30WR3 series are isolated 30W DC-DC converter products with a 2:1 input voltage range. They feature efficiencies of up to 90%, 1500VDC input to output isolation, operating temperature of -40°C to +85°C, input under-voltage protection, output over-current, short-circuit, over-voltage protection and over-temperature protection, which is widely used in communication field, such as switches, repeaters, intelligent communication gateways, GPS synchronous clock and 4G/5G base station etc.

Selection Guide							
		Input Voltage (VDC)		Output		Full Load	Max. Capacitive
Certification	Part No.	Nominal (Range)	Max. ^①	Voltage (VDC)	Current(mA) Max./Min.	Efficiency [®] (%) Min./Typ.	Load(µF)
	SVCB4805SBO-30WR3	48 (36-75)	80	5	6000/0	88/90	7200
0 F	SVCB4812SBO-30WR3			12	2500/0	88/90	2000
CE	SVCB4815SBO-30WR3			15	2000/0	88/90	1500
	SVCB4824SBO-30WR3			24	1250/0	88/90	470
-	SVCB4828SBO-30WR3			28	1072/0	88/90	440

Notes:

② Efficiency is measured at nominal input voltage and rated output load.

Item	Operating Conditions	Min.	Тур.	Max.	Unit
Input Current (full load / no load)	Nominal input voltage		695/6	711/15	mA
Reflected Ripple Current	Normal input voltage		50	-	
Surge Voltage (1sec. max.)		-0.7		100	
Start-up Voltage				36	VDC
Under-voltage Protection		26	29		
Start-up Time	Nominal input voltage & constant resistance load			100	ms
Input Filter		C filter			
Hot Plug		Unavailable			
	Module on	Ctrl pin op	en or pulle	d high (TTL 3	.5-12VDC
Ctrl*	Module off	Ctrl pin pulled low to GND (0-1.2VDC)			
	Input current when off		6	10	mA

Output Specifications					
Item	Operating Conditions	Min.	Тур.	Max.	Unit
Voltage Accuracy	5%-100% load		±1	±3	
Linear Regulation	Input voltage variation from low to high at full load		±0.2	±0.5	%
Load Regulation [®]	5%-100% load		±0.5	±1	

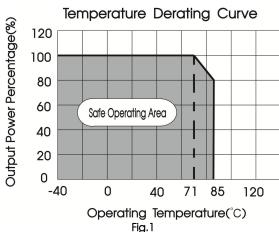
① Exceeding the maximum input voltage may cause permanent damage;

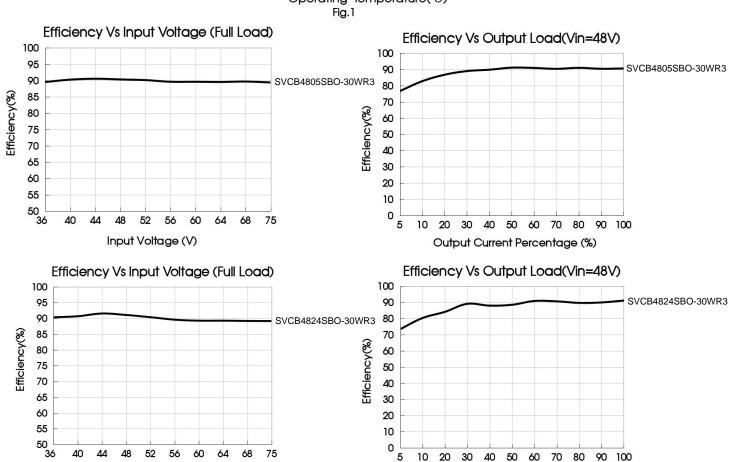
DC/DC Converter SVCB48_SBO-30WR3 Series

Transient Recovery Time	25% load step change, nominal input voltage			300	500	μs
T	25% load step change, nominal input voltage	5V output		±5	±8	01
Transient Response Deviation		Others		±3	±5	%
Temperature Coefficient	Full load		-	-	±0.03	%/℃
Ripple & Noise®	20MHz bandwidth, 5%-100% load			100	150	mV p-p
Trim			90		110	
Output Voltage Remote Compensation(sense)					105	%Vo
Over-voltage Protection		110	130	160		
Over-current Protection Input voltage range		110	150	190	%lo	
Short-circuit Protection		С	ontinuous,	self-recover	γ	

Note:

1Load regulation for 0%-100% load is ±3%;

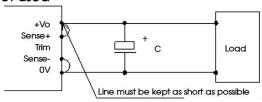

@Ripple & Noise at < 5% load is 5%Vo max. The "parallel cable" method is used for ripple and noise test, please refer to DC-DC Converter Application Notes for specific information.


Item	Operating Conditions	Min.	Тур.	Max.	Unit
Isolation	Input-output Electric Strength Test for 1 minute with a leakage current of 1mA max.	1500			VDC
Insulation Resistance	Input-output resistance at 500VDC	1000			ΜΩ
Isolation Capacitance	Input-output capacitance at 100KHz/0.1V		1000		pF
Operating Temperature	See Fig. 1	-40	-	+85	
Storage Temperature		-55	-	+125	°C
Over-temperature Protection	Out-case max. temperature	-	130		
Storage Humidity	Non-condensing	5	-	95	%RH
Vibration		10-150H	lz, 5G, 0.75r	nm. along X	, Y and Z
Switching Frequency*	PWM mode	-	230		KHz
MTBF	MIL-HDBK-217F@25℃	1000			K hours

Mechanical Specifications				
Dimensions	33.02 x 22.86 x 9.18mm			
Weight	12.0g (Typ.)			
Cooling Method	Free air convection			

Electromagnetic Compatibility (EMC)						
Emissions	CE	CISPR32/EN55032	CLASS B (see Fig.3-1) for recommended circuit)			
	RE	CISPR32/EN55032	CLASS B (see Fig.3-1) for recommended circuit)			
	ESD	IEC/EN61000-4-2	Contact ±4KV	perf. Criteria B		
	RS	IEC/EN61000-4-3	10V/m	perf. Criteria A		
Immunity	EFT	IEC/EN61000-4-4	±2KV (see Fig.3-2) for recommended circuit)	perf. Criteria B		
	Surge	IEC/EN61000-4-5	line to line ±2KV (see Fig.3-2) for recommended circuit)	perf. Criteria B		
	CS	IEC/EN61000-4-6	3 Vr.m.s	perf. Criteria A		

Typical Characteristic Curves

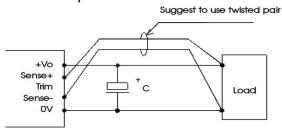


Remote Sense Application

1. Remote Sense Connection if not used

Input Voltage (V)

Output Current Percentage (%)


DC/DC Converter

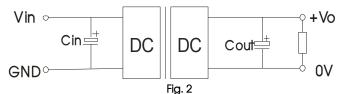
SVCB48_SBO-30WR3 Series

Notes:

- (1) If the sense function is not used for remote regulation the user must connect the +Sense to +Vo and -Sense to 0V at the DC-DC converter pins and will compensate for voltage drop across pins only.
- (2) The connections between Sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.

2. Remote Sense Connection used for Compensation

Notes:


- (1) Using remote sense with long wires may cause unstable output, please contact technical support if long wires must be used.
- (2) PCB-tracks or cables/wires for Remote Sense must be kept as short as possible. Twisted pair or shielded wires are suggested for remote compensation and must be kept as short as possible.
- (3) We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.
- (4) Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation.

Design Reference

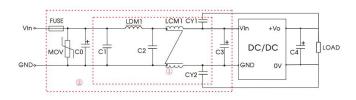
1. Typical application

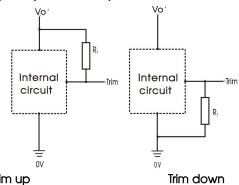
All DC-DC converters of this series are tested before delivery using the recommended circuit shown in Fig. 2. Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by

Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.

Vin	48V
Cin	100µF
Cout	10µF

EMC compliance circuit




Fig. 3

Notes: For EMC tests we use Part ② in Fig. 3 for immunity and part ① for emissions test. Selecting based on needs.

Parameter description:

Model	Vo:28V	Vo:Others		
FUSE	Select fuse value according to actual input current			
MOV	\$14	K60		
C0	680uF	/100V		
C1, C2	22uF/100V			
C3	330µF/100V			
C4	Refer to the Cout in Fig.2			
LCM1	4.7mH, recommended to use SFL2D-30-472			
LDM1	22 uH			
CY1	2.2nF/2KV	2.2nF/2KV		
CY2	3.2nF/2KV	2.2nF/2KV		

3. Trim Function for Output Voltage Adjustment (open if unused)

TRIM resistor connection (dashed line shows internal resistor network)

Trim resistor calculation:

Trim up

$$R_{T} = \left(\frac{5.11 V_{nom} (100 + \Delta\%)}{1.225 \Delta\%} - \frac{511}{\Delta\%} - 10.22\right) (k\Omega)$$

Trim down

$$R_T = \left(\frac{511}{\Delta\%}\right) - 10.22(k\Omega)$$

Note:

RT = Trim Resistor value

$$\Delta\% = \left| \frac{V_{nom} - V_{out}}{V_{nom}} \right| \times 100$$

 $V_{\it nom}$ =nominal output voltage

 V_{out} =desired output voltage

4. The products do not support parallel connection of their output

Dimensions and Recommended Layout

Note:

Unit: mm[inch]

Pin section tolerances: $\pm 0.10[\pm 0.004]$ General tolerances: $\pm 0.50[\pm 0.020]$

The layout of the device is for reference only, please

\$\phi 2.00 [0.079]

refer to the actual product

Note:

- 1. The maximum capacitive load offered were tested at input voltage range and full load;
- 2. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25°C, humidity<75%RH with nominal input voltage and rated output load;

\$\phi 2.50 [0.098]

6

8

Trim

Sense+

+V0

- 3. All index testing methods in this datasheet are based on company corporate standards;
- 4. We can provide product customization service, please contact our technicians directly for specific information;
- 5. Products are related to laws and regulations: see "Features" and "EMC";
- 6. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.