

75W isolated DC-DC converter

Wide input voltage and regulated single output

FEATURES

- Ultra-wide 4:1 input voltage range
- High efficiency up to 93%
- I/O isolation test voltage: 2.25k VDC
- Operating ambient temperature range: -40°C to +85°C
- Input under-voltage protection, output short circuit, over-current, over-voltage, over-temperature protection
- Five-sided metal shielded package
- Industry standard ¼-Brick package and pin-out
- EN62368 approved
- Meet UL62368, IEC62368, EN50155 standards

CE Patent Protection RoHS

SURF48_QB-75W(F/H)R3(A5/A6) series are isolated 75W DC-DC products with a 4:1 input voltage. They feature efficiency up to 93%, 2250VDC input to output isolation, operating ambient temperature of -40°C to +85°C, input under-voltage, output short circuit, over-current, over-voltage, over-temperature protection. The products meet CLASS B of CISPR32/EN55032 EMI standards by adding the recommended external components, and they are widely used in applications such as battery powered systems, industrial controls, electricity, instrumentation, railway, communication and intelligent robotic.

Selection Guide								
			Input Voltage (VDC)		Output		Full Load	Max.
Certification	Part No. [®]	Ctrl Logic [®]	Nominal (Range)	Max.®	Voltage (VDC)	Current (A) (Max.)	Efficiency(%) Min./Typ.	Capacitive Load(µF)
	SURF4805QB-75W(F/H)R3	Р			5	15	89/91	6000
	SURF4812QB-75W(F/H)R3	Р	48 (18-75)	80	12	6.25	90/92	2000
CE	SURF4815QB-75W(F/H)R3	Р			15	5	91/93	2000
	SURF4824QB-75W(F/H)R3	Р			24	3.13	90/92	1000
	SURF4848QB-75W(F/H)R3	Р			48	1.56	90/92	470
	SURF4805QB-75W(H)R3A5/A6	Р			5	15	87/89	6000
	SURF4812QB-75W(H)R3A5/A6	Р		-	12	6.25	88/90	2000
	SURF4815QB-75W(H)R3A5/A6	Р		-	15	5	89/91	2000
	SURF4824QB-75W(H)R3A5/A6	Р			24	3.13	88/90	1000
	SURF4848QB-75W(H)R3A5/A6	Р			48	1.56	88/90	470

Note:

①Use "F" suffix is for added aluminum baseplate and "H" suffix for heat sink mounting. Use "A5" suffix for chassis mounting and "A6" suffix for DIN-Rail mounting. We recommend to choose modules with a heat sink for enhanced heat dissipation and applications with extreme temperature requirements; @ "P" means positive logic, "N" means negative logic;

③Exceeding the maximum input voltage may cause permanent damage;

The minimum input voltage range and the start-up voltage of the A5/A6 product model are 1VDC higher than the horizontal package.

Input Specifications						
Item	Operating Conditions	Min.	Тур.	Max.	Unit	
Input Current (full load/no-load)	Nominal input voltage		1698/50	1756/80) mA	
Reflected Ripple Current	Nominal input voltage		30			

DC/DC Converter SURF48_QB-75W(F/H)R3(A5/A6) Series

Surge Voltage (1sec. max.)		-0.7		90	
Start-up Voltage				18	VDC
Input Under-voltage Protection	5VDC, 15VDC output	16	16.5		VDC
	Others	15	15.5		
Input Filter		Pi filter			
Hot Plug		Unavailable			
	Module on	Ctrl pin open or pulled high (3.5-12VDC)			
	Module off	Ctrl pin pulled low to GND (0-1.2VDC)			VDC)
	Input current when off		2	10	mA
Note: 1)The Ctrl pin voltage is reference	ed to input GND.				

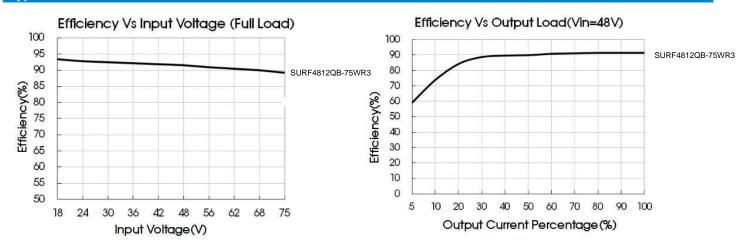
Output Specifications	3					
Item	Operating Conditions	Operating Conditions			Max.	Unit
Voltage Accuracy	0%-100% load			±l	±3	
Linear Regulation	Input voltage variation fro	om low to high at full load		±0.2	±0.5	%
Load Regulation	0%-100% load			±0.5	±0.75	
Transient Recovery Time	25% load step change			200	500	μs
Transient Response Deviation	25% load step change	5VDC output		±3	±7.5	%
		Others		±3	±5	
Temperature Coefficient	Full load	Full load			±0.03	%/ ℃
Discula O Mala a [®]	20MHz bandwidth	12VDC, 15VDC output		100	200	mVp-p
Ripple & Noise [®]		Others		150	250	
Trim [®]		· · ·	95		110	0 (1) (
Sense®					105	%Vo
Over-temperature Protection	Max. Case Temperature	Max. Case Temperature			120	°C
Over-voltage Protection			110	130	160	%Vo
Over-current Protection	Input voltage range		110	140	190	%lo
Short-circuit Protection		Hiccup, continuous, self-recovery				
Nata:						

Note: ①The "parallel cable" method is used for ripple and noise test, please refer to DC-DC Converter Application Notes for specific information;

⁽²⁾For SURF4805QB-75W(F/H)R3 and SURF4815QB-75W(F/H)R3, Vin needs to be higher than 20VDC, if use Trim function to adjust output to 10% or the Sense function to adjust output to 5%.

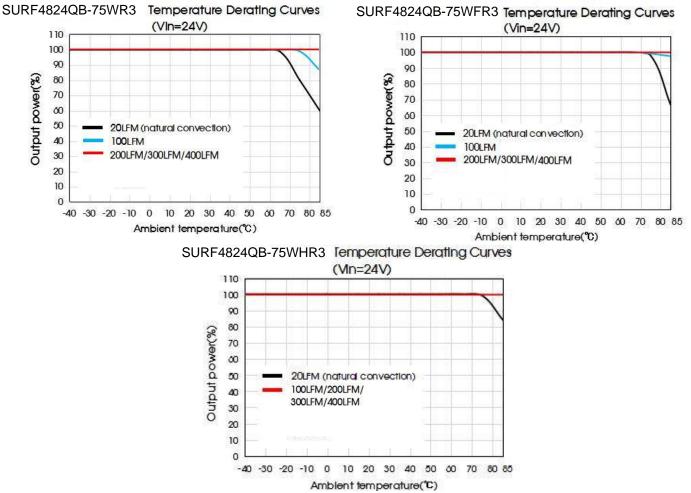
ltem	Operating Conditions	Operating Conditions		Тур.	Max.	Unit
	Electric Strength Test for 1	Input-output	2250			
Isolation	minute with a leakage	Input-case	1500			VDC
	current of 5mA max	Output-case	500			
Insulation Resistance	Input-output resistance at 50	00VDC	100			MΩ
Isolation Capacitance	Input-output capacitance a	it 100KHz/0.1∨		2200		pF
Operating Temperature					+85	- °C
Storage Temperature			-55		+125	C
Storage Humidity	Non-condensing		5		95	%RH
Pin Soldering Resistance	Wave-soldering, 10 seconds	Wave-soldering, 10 seconds			260	ĉ
Temperature	Soldering spot is 1.5mm awa	Soldering spot is 1.5mm away from case for 10 seconds			300	
Shock And Vibration					gory 1, Gro	de B
Switching Frequency	PWM mode	PWM mode				KHz
MTBF	MIL-HDBK-217F@25°C	500			K hours	

DC/DC Converter SURF48_QB-75W(F/H)R3(A5/A6) Series



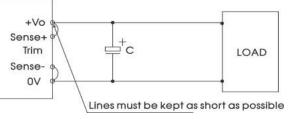
Mechanical Specifications

Case Material	Aluminum alloy case, black plastic botton	n, flame-retardant and heat-resistant (UL94 V-0)				
	SURF48xxQB-75WR3	61.8 x 40.2 x 12.7 mm				
	SURF48xxQB-75WFR3	62.0 x 56.0 x 14.6 mm				
	SURF48xxQB-75WHR3	61.8 x 40.2 x 27.7 mm				
Dimension	SURF48xxQB-75WR3A5	135.00 x 70.00 x 22.6mm				
	SURF48xxQB-75WR3A6	137.00 x 70.00 x 28.10mm				
	SURF48xxQB-75WHR3A5	135.00 x 70.00 x 36.20mm				
	SURF48xxQB-75WHR3A6	137.00 x 70.00 x 37.20mm				
	SURF48xxQB-75WR3	90.0g(Тур.)				
	SURF48xxQB-75WFR3	110.0g(Typ.)				
	SURF48xxQB-75WHR3	121.0g(Typ.)				
Weight	SURF48xxQB-75WR3A5	166.0g(Typ.)				
	SURF48xxQB-75WR3A6	236.0g (Typ.)				
	SURF48xxQB-75WHR3A5	197.0д(Тур.)				
	SURF48xxQB-75WHR3A6	267.0g (Typ.)				
Cooling Method	Free air convection (20LFM)	Free air convection (20LFM)				


Electromagnetic Compatibility (EMC)						
Fachalana	CE	CISPR32/EN55032	CLASS A and CLASS B (see Fig. 3 for recommended	ed circuit)		
Emissions	RE	CISPR32/EN55032	CLASS A and CLASS B (see Fig. 3 for recommended circuit)			
	ESD	IEC/EN61000-4-2, EN50121-3-2	Contact ±6KV Air ±8KV	perf.Criteria B		
	RS	IEC/EN61000-4-3, EN50121-3-2	10V/m	perf.Criteria A		
	EFT	IEC/EN61000-4-4, EN50121-3-2	±2KV(see Fig. 2 for recommended circuit)	perf.Criteria A		
Immunity	Surge	EN50121-3-2	differential mode ±1KV, 1.2/50us, source impedance 42 Ω (see Fig.2 for recommended circuit)	perf.Criteria B		
	CS	IEC/EN61000-4-6, EN50121-3-2	10 Vr.m.s	perf.Criteria A		

Typical Performance Curves

DC/DC Converter SURF48_QB-75W(F/H)R3(A5/A6) Series

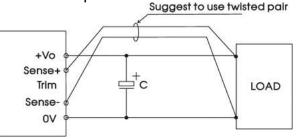


Notes:

1) Product application thermal design should be referred to the recommended PCB layout and recommended heat dissipation structure, please see DC-DC Converter Application Notes for specific operation.

Remote Sense Application

1. Remote Sense Connection if not used



Notes:

(1) If the sense function is not used for remote regulation the user must connect the +Sense to +Vo and -Sense to 0V at the DC-DC converter pins and will compensate for voltage drop across pins only.

(2) The connections between Sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.

2. Remote Sense Connection used for Compensation

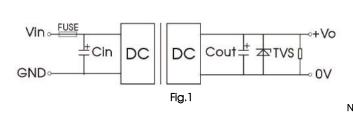
Notes:

(1) Using remote sense with long wires may cause unstable output, please contact technical support if long wires must be used.

(2) PCB-tracks or cables/wires for Remote Sense must be kept as short as possible. Twisted pair or shielded wires are suggested for remote compensation and must be kept as short as possible.

(3) We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.

(4) Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation.

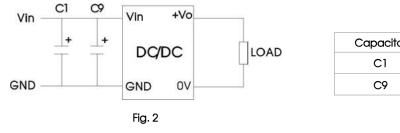

Design Reference

1. Typical application

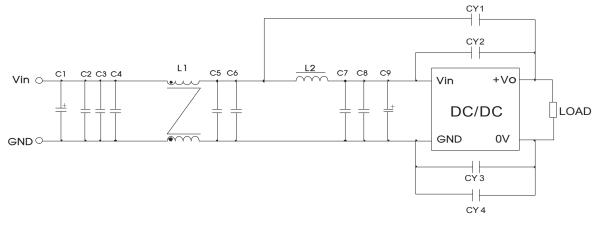
We recommended using the recommended circuit shown in Fig. 1 during product testing and application, otherwise please ensure that at least a 220µF electrolytic capacitors is connected at the input in order to ensure adequate voltage surge suppression and protection.
We recommended increasing the value of Cin and pay attention to the unstable input voltage if the product input side is paralleled with motor drive circuit and/or larger energy transient circuits, to ensure the stability of input terminal and avoid repeatedly start-up problems due to input voltage lower than under-voltage protection point.

(3) We recommended increasing the output capacitance with limited to the capactive load specification and/or increasing the voltage clamping circuit(such as TVS) if the output terminal is inductive device such as relay or a motor, to ensure adequate voltage surge suppression and protection.

(4) Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.


Vout(VDC)	Fuse	Cin®	Cout	TVS
5	10A, slow blow		470µF	SMDJ6.0A
12			000	SMDJ14A
15		220µF	220µF	SMDJ17A
24			100.5	SMDJ28A
48			100µF	SMDJ54A

Note:


 \bigcirc Please pay attention to the ambient temperature of the product when using an external capacitor, increase the electrolytic capacitor values to at least 1.5 times the original parameter if the ambient temperature is low(such as -25°C).

2. EMC solution-recommended circuit

We suggest to use the recommended circuit shown in Fig.2 or Fig.3 during product EMC testing and application.

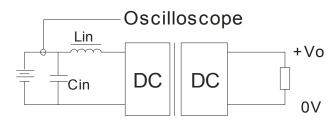

Capacitor	Recommended Value	Function
Cl	150µF electrolytic	Meets EFT and
C9	47µF electrolytic	surge

Class A Components	Class B Components	Recommended Component Value	Function
C	21	150 μ F electrolytic capacitor	
C	29	47 μ F electrolytic capacitor	
C	21	150 μ F electrolytic capacitor	Meets
C	29	47 μ F electrolytic capacitor	conducted emission and radiated
C2, C3, C4, C	C5, C6, C7, C8	2.2 μ F ceramic capacitor	
l	L1 1.0mH common mode inductor		emission
٤2		$1.5\mu\text{H}$ inductance	
CY3 CY1, CY2, CY3, CY4		InFY1 safety capacitor	

3. Trim Function for Output Voltage Adjustment (open if unused)

Calculation formula of Trim resistance:

up:
$$R_{T} = \frac{aR_2}{R_2 - a} - R_3$$
 $a = \frac{Vref}{Vo' - Vref} \cdot R_1$
down: $R_{T} = \frac{aR_1}{R_1 - a} - R_3$ $a = \frac{Vo' - Vref}{Vref} \cdot R_2$


Note: Value for R1, R2, R3, and Vref refer to the above table . RT: Resistance of Trim. a: User-defined parameter, no actual meanings. Vo': The trim up/down voltage.

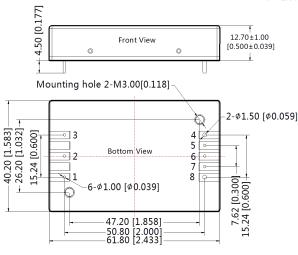
TRIM resistor connection (dashed line shows internal resistor network)

Vout(VDC)	R1(KΩ)	R2(K Ω)	R3(K Ω)	Vref(V)
5	3.036	3	10	2.5
12	11.00	2.87	15	2.5
15	14.03	2.8	15	2.5
24	24.872	2.87	15	2.5
48	53.017	2.913	15	2.5

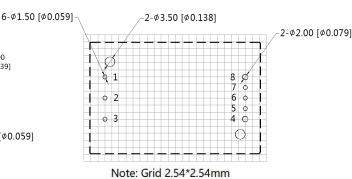
Note: If the Trim pin is shorted with "+Vo", or its value is too low, then the output voltage Vo' would be lower than 0.95Vo, which may cause permanent damage.

4. Reflected ripple current--test circuit

Note: Lin(4.7 μ H), Cin (220 μ F, ESR < 1.0 Ω at 100 KHz)

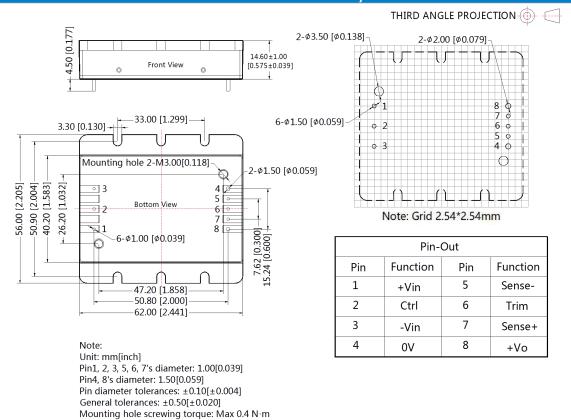

5. The products do not support parallel connection of their output.

6. We recommended the use of a converter with higher output power capability to cover applications with higher power requirements.



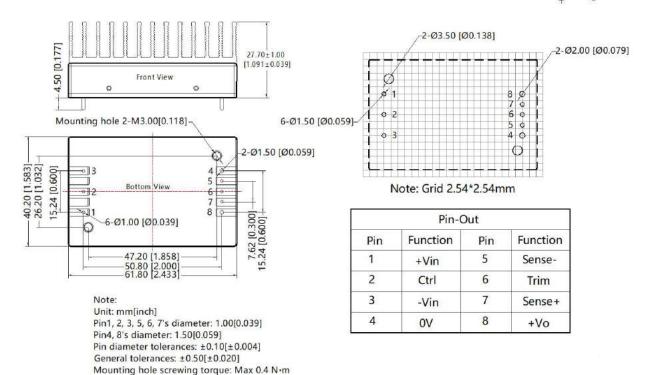
SURF48xxQB-75WR3 Dimensions and Recommended Layout

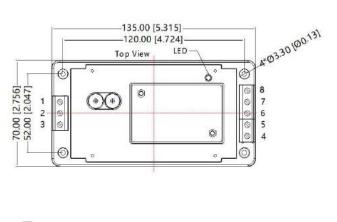
THIRD ANGLE PROJECTION

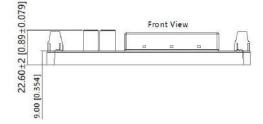


Note: Unit: mm[inch] Pin1, 2, 3, 5, 6, 7's diameter: 1.00[0.039]Pin4, 8's diameter: 1.50[0.059]Pin diameter tolerances: $\pm 0.10[\pm 0.004]$ General tolerances: $\pm 0.50[\pm 0.020]$ Mounting hole screwing torque: Max 0.4 N·m

Pin-Out						
Pin	Pin Function Pin Fu					
1	+Vin	5	Sense-			
2	Ctrl	6	Trim			
3	-Vin	7	Sense+			
4	0V	8	+Vo			

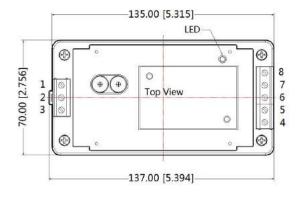

SURF48xxQB-75WFR3 Dimensions and Recommended Layout

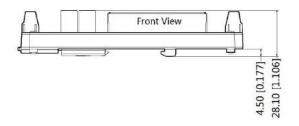



SURF48xxQB-75WHR3 Dimensions and Recommended Layout

<u>SURF48xxQB-75WR3A5 Dimensions and Recommended Layout</u>

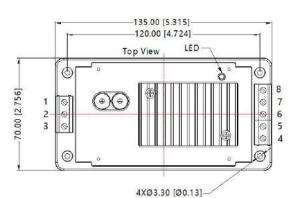
THIRD ANGLE PROJECTION \bigoplus


Pin-Out	
Pin	Function
1	+Vin
2	Ctrl
3	-Vin
4	0V
5	Sense-
6	Trim
7	Sense+
8	+Vo


Note: Unit: mm[inch] Wire range: 24-12 AWG Tightening torque: Max 0.4 N·m Installed on DIN RAIL TS35 General tolerances: ±1.00[±0.040]

SURF48xxQB-75WR3A6 Dimensions and Recommended Layout

THIRD ANGLE PROJECTION 🛞 🧲

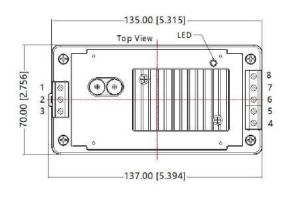


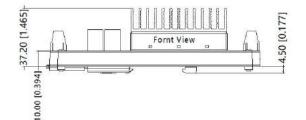
Pir	n-Out
Pin	Function
1	+Vin
2	Ctrl
3	-Vin
4	0V
5	Sense-
6	Trim
7	Sense+
8	+Vo

Note: Unit: mm[inch] Wire range: 24-12 AWG Tightening torque: Max 0.4 N·m Installed on DIN RAIL TS35 General tolerances: ±1.00[±0.040]

SURF48xxQB-75WHR3A5 Dimensions and Recommended Layout

THIRD ANGLE PROJECTION


Pin-Out	
Pin	Function
1	+Vin
2	Ctrl
3	-Vin
4	OV
5	Sense-
6	Trim
7	Sense+
8	+Vo


Note: Unit: mm[inch] Wire range: 24-12 AWG Tightening torque: Max 0.4 N·m General tolerances: ±1.00[±0.040]

SURF48xxQB-75WHR3A6 Dimensions and Recommended Layout

Pin-Out	
Pin	Function
1	+Vin
2	Ctrl
3	-Vin
4	0V
5	Sense-
6	Trim
7	Sense+
8	+Vo

Note: Unit: mm[inch] Wire range: 24-12 AWG Tightening torque: Max 0.4 N·m Installed on DIN RAIL TS35 General tolerances: ±1.00[±0.040]

Note:

- 1. For additional information on Product Packaging please refer to www.schmid-m.com Packaging bag number:
- 58010113(SURF48xxQB-75WR3), 58200069(SURF48xxQB-75WFR3), 58220017(SURF48xxQB-75WHR3), 58220031(SURF48xxQB-75W(H)R3(A5/A6)); 2. The maximum capacitive load offered were tested at input voltage range and full load;
- 3. Unless otherwise specified, data in this datasheet should be tested under the conditions of Ta=25°C, humidity<75%RH with nominal input voltage and rated load;
- 4. All index testing methods in this datasheet are based on our company corporate standards;
- 5. We can provide product customization service, please contact our technicians directly for specific information;
- 6. Products are related to laws and regulations: see "Features" and "EMC";
- 7. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.